Innodisk SATADOM-SL 3ME3 V2 32GB Benchmarks and Review

0
Innodisk SATADOM SL 3ME3 V2 32GB Installed
Innodisk SATADOM SL 3ME3 V2 32GB Installed

If you are looking for a lower-capacity SATADOM, Innodisk SATADOM-SL 3ME3 V2 32GB SSD is a solid option. The SATADOM form factor is easy to integrate into servers and provides a low power and low footprint option to get a boot SSD into a server. With a growing market, there are a number of vendors vying with SATADOM designs. In this article, we are going to provide benchmarks of the Innodisk 32GB module and show how it performs compared to a few other options.

Innodisk SATADOM-SL 3ME3 V2 32GB What is it?

A SATADOM is, at its simplest, a small SSD. These SSDs are made to fit into 1U form factor servers and add an SSD without requiring a drive bay. SATADOM devices are tiny and only slightly larger than the size of a US quarter.

Key use cases for the SATADOMs are in embedded applications and as boot devices. For example, they are popular in smaller servers to reduce the overall server footprint and power consumption. For storage servers and virtualization servers, they are often used as OS drives in order to conserve drive bays for use by larger capacity disks. While OEMs such as Dell may use SD cards to boot ESXi, many other OEMs utilize SATADOMs.

Innodisk SATADOM SL 3ME3 V2 32GB Drive
Innodisk SATADOM SL 3ME3 V2 32GB Drive

Typically due to space considerations, SATADOMs do not use onboard local DRAM caching. That lowers write performance, which as we will see is less of an issue for these drives. It also means that without a write cache, there is no need for the extra PCB space for power loss protection circuitry nor a DRAM chip. That keeps the form factor extremely compact.

One word of caution. We have spoken to a number of server manufacturers and the primary cause of failure in SATADOMs is not device failure. Rather, it is using these devices for the wrong purpose. Apparently, some MSPs have been using SATADOMs as read/ write caches for ZFS, Ceph and other storage platforms. That causes heavy writes to usually smaller capacity drives (256GB SATADOMs are considered large by today’s standards) not rated for that level of endurance. As a result, 16GB/ 32GB SATADOMs are incorrectly put into large storage servers with 7DWPD workloads and fail quickly. This is apparently a common issue, so STH readers, please do not try this. SATADOMs like the Innodisk SATADOM-SL 3ME3 V2 32GB have wide environmental operating ranges and are very durable. You can see detailed specs on the Innodisk website.

Innodisk SATADOM-SL 3ME3 V2 32GB Power and Power Consumption

In embedded platforms as well as many storage servers, there are no extra SATA power cables or Molex connectors in the chassis. That means to power a SATADOM one may require a different approach. Supermicro enables SATADOMs extensively, and the Innodisk SATADOM-SL 3ME3 V2 64GB drive is able to use a feature it calls “8 pin power” to power the SATADOM. To use this feature, you will want to utilize the gold SATA connectors on Supermicro motherboards as shown with the 32GB module installed here:

Innodisk SATADOM SL 3ME3 V2 32GB Installed
Innodisk SATADOM SL 3ME3 V2 32GB Installed

In that setup, power is provided by the SATA connector itself and no additional cables are needed. This is a very elegant solution and is something that not all SATADOMs support. Innodisk specifically advertises Supermicro compatibility and one can see why.

If you do not have SATA connectors that support this power, you can still utilize SATADOMs. Our test units came with SATADOM power connectors as well as a 4-pin Molex power cable.

Innodisk SATADOM 3ME3 V2 Rear With Optional Power Cables
Innodisk SATADOM 3ME3 V2 Rear With Optional Power Cables

If you have never installed a SATADOM power cable onto a motherboard, the experience is generally less than pleasant as the standard headers are extremely small. If you can, always use 8-pin powered SATA ports. Here is what it looks like if you use one of the white SATA ports with a cable:

Innodisk SATADOM 3ME3 V2 Installed With SATADOM Power Cable
Innodisk SATADOM 3ME3 V2 Installed With SATADOM Power Cable

As you can see, there is the extra wire. Also, Supermicro and a few other vendors do specifically make powered SATADOM ports with extra clearance around them so you can use multiple modules. You can see that we can fit two modules on the gold ports but only one between the two white ports that are made for standard SATA cabling.

We took a few different boot drive solutions and wanted to show our system’s boot power. The Innodisk SATADOM-SL 3ME3 V2 32GB drive is rated at 1.8w which is lower than most SSDs:

Innodisk SATADOM V USB V SSD Power Consumption
Innodisk SATADOM V USB V SSD Power Consumption

The overall power consumption is slightly less. While in larger storage servers, the primary benefit is going to be the ability to use a SATA boot device without using a drive bay, the benefit on embedded systems can be more drastic. If you use SATADOMs on sub 100w nodes and then have 100 per rack, you can essentially get enough power to add two additional nodes per rack.

Innodisk SATADOM-SL 3ME3 V2 32GB Performance

Given that we wanted to make this a larger series, we wanted to develop a methodology that makes sense. Since the typical usage of a SATADOM is to boot into an OS. Typically heavy logging and data serving will happen from other devices or network storage.

Here are the raw throughput figures using sequential writes. We are using two low capacity Intel SSDs for the comparison group.

Innodisk SATADOM V USB V SSD Performance
Innodisk SATADOM V USB V SSD Performance

The SATADOMs are a bit slower than the general purpose SSDs. They lack onboard RAM for caching. That slows write performance but also means that in-flight data is not cached in DRAM which is what you want for data protection purposes. While that test may be informative into raw specs, we wanted to look at how it translates into real-world usage. The 32GB module has solid read speeds but the write speeds are below the larger capacity Innodisk SATADOMs.

We decided to setup a test image based on Centos 7.3 to serve as a KVM hypervisor. We timed from when the server started booting to when we hit the CentOS logon prompt. That should be a good proxy for performance whether you are using VMware ESXi, RedHat Enterprise Linux, Ubuntu, Debian, Microsoft Hyper-V Server, Microsoft Windows Server or other OSes. While the boot times may differ in their values, the tasks are largely the same so relative performance is what we are looking to gauge.

Innodisk SATADOM V USB V SSD KVM Hypervisor Node Boot Times
Innodisk SATADOM V USB V SSD KVM Hypervisor Node Boot Times

Here, the SATADOM solution was extremely close to the Intel S3500 SSD, with the added benefit of an easier-to-use form factor. Compared to our USB 3.0 thumb drive solutions, the Innodisk SATADOM-SL 3ME3 V2 32GB was noticeably faster. While the synthetic benchmarks are interesting, the primary job of a SATADOM is to boot a system quickly and reliably. Here the Innodisk SATADOM-SL 3ME3 V2 32GB did well.

Final Words

SATADOMs are addictive. Once you start using them, they have a way of multiplying in systems. At STH, we now use a lot of SATADOMs like the Innodisk SATADOM-SL 3ME3 V2 32GB we reviewed in this article. The 32GB capacity is on the lower-end of what many users will want today as there are some OSes where we will categorically recommend larger SATADOMs (such as Microsoft Windows.) If you are using VMware ESXi or a custom Linux image, the 32GB capacity should be plenty. In terms of raw boot performance, the Innodisk SATADOM-SL 3ME3 V2 32GB performed well. As for pricing and availability, these were not in-stock at reasonable prices as we were writing this piece. We were told to expect the drives to hit a sub $45 price point.

LEAVE A REPLY

Please enter your comment!
Please enter your name here

This site uses Akismet to reduce spam. Learn how your comment data is processed.